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ABSTRACT 
 

Localization of Wireless Sensor Network (WSN) is the problem of finding the geo-locations of 

sensors in a sensor network deployed in various applications. Given the prolification of 

sensors in various applications, the localization and tracking of sensors have received 

considerable attention. Properties of rigidity and flexibility of the underlying graph of the 

WSN have been studied  as a means of determining the localizability of the nodes in the WSN. 

In this paper, we present a new 3-merge technique  for merging three rigid clusters of a 

network graph, into larger rigid cluster and we use this algorithm for finding maximal 

localizable regions within the  WSN.  We provide simulation results on random deployments 

of WSN to prove that this technique outperforms previously known algorithms for finding 

maximal localizable subregions. Moreover, simulation results show that the number of 
anchors needed to localize the entire WSN decreases due to finding large localizable regions.  
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1. INTRODUCTION 
 

Wireless sensor networks are a collection of sensor nodes deployed in various applications 

including environmental monitoring, search and rescue missions, autonomous driving, target 
tracking, healthcare monitoring, forest fire detection etc.[13][7][16][17]. Awareness of the exact 

location of the sensors is cruicial to the success of these applications. Once deployed, in a 

majority of these applications, the sensors move after deployment and therefore predetermining 

the location of the sensors is not practical. Moreover, it is not always possible to  equip the 
sensors with GPS due energy consumptions and obstructions in indoor applications. 

Determining the ge-locations of sensors is the problem of localization of a WSN.  

 
There have been several approaches to localization depending the capability of the sensor nodes 

to obtain various information about the context it is in,  and whether the algorithm is centralized 

or distributed[9]. The range-based approaches assume that sensors can find the distance to 
neighborng sensors within their sensor radius using RSSI signal strength, or time difference of 

arrival (TOA) between radio signals. In addition, angle of arrival (AOA) of a signal [10], can be 

used determine the location of the sensors. In range-free approaches, where distance betweeen 

sensors in not known, [2][12], number of hops is used for localization. Many approaches 
assume that there are specialized anchors whose location is known, in cases where limited 

number of GPS equipped sensors are available. In range-free localization, number of hops to an 

anchor is used as a means of locating sensors. 
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In self-localization, nodes localize using distribued computation[9][11], by exchanging 

information with surrounding nodes. The geometric property of location of nodes dictates that 
given a set of nodes whose locations are known and an unlocalized nodes whose distance to 

three localized nodes are known, the location of the unlocalized node can be uniquely 

determined. The process of thus growing localized set of nodes by spanning out the localized 

nodes is called trilateration. Trilateration [1],[18] is commonly used as a means of localizing 
nodes, and often a variation of bilateration is used to find location of nodes. Moreover 

localization is assisted by a mobile anchor or mobile robot that help add missing distances 

between sensor nodes [15][19]. 
 

In centralized approach where each node sends its data to a centralized server, the distance map 

or any other information provided can be used for localization. The MDS-MAP [6] technique 

finds the missing distances using shortest path algorithm and uses distance matrix for 
localization. It turns out that given a distance map between nodes, finding the exact geo-

locations of nodes is closely related to the problem of rigidity of the underlyling network graph. 

Therefore finding large rigid subgraphs within a WSN is extremely useful in localizing large 
number of sensor nodes. Therefore there has been considerable interest in using rigdity for 

localization. [3][9]. Recently, Erin [4] has proposed a new graph invariant for graph rigdity, 

namely redudancy index and rigdity index. There exists a unique realization of the graph onto 
2D plane if and only if the given the WSN is uniquely localizable. While checking if a graph is 

globally rigid is polynomially solvable, finding locations of the nodes in a rigid graph is NP-

Complete. Using our polynomial time algorithm, large globally rigid subregions can be found in 

the network each of which are localizable.. Note that actual realization of this lower bound 
would require 3 anchors per rigid retion, and using MDS-MAP algorithm for each rigid region 

and merging the local maps to obtain a global map. Our experimental results indicate that this 

new 3-merge technique localizes large number of nodes in any randomly deployed WSN.  
 

It is shown that even in sparse networks, a large percentage of nodes can be localized with as 

few as 3 anchor nodes. The paper is organized as follows. In Section 2, we provide the details of 
rigidity theory of graphs. In Section 3, we provide the new 3-merge technique used for finding 

This technique extends the 2-merge technique given in [8]. In Section 4, we present the 

localization algorithm using the new theorem. In Section 5, we present the results of simulation.  

 

2. GRAPH RIGIDITY AND LOCALIZATION 
 

In this section, we introduce the theory in network localizability and rigidity. A detailed 

description can be found in [3]. 
 

Given a network graph WSN sensor nodes 1..n and distances between a subset of node pairs, the 

network localization problem is to determine the unique locations of the nodes such that the 

eucledean distance between the localtion of sensor node i and sensor node j is the distance 
between sensor nodes i and j  of the sensor network. 

  

We model the network as a graph G = (V, E), where  V = {v1, v2, ..., vn} denote the sensor nodes 

of the network and an edge (vi,vj) ∈ E exists if the distance between vi and vj is known. The edge 

weight wij, denotes the distance between the nodes vi and vj. The network localization problem 

is to determine the locations of V such that the eucledean distance between the vertex locations 

is equal to the edge weight wij, for each edge (vi,vj) ∈ E. If under the given constraints, there is 
only one position for each node, then the network is localizable. The problem of localization is 

to find the unique location of each vertex subject to given distance information between 

vertices. 
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The network localization problem is closely related to the Euclidean graph realization problem. 

A framework of a graph G is a mapping of vertices of G onto 2D plane, such that distance 
between two vertex placements precisely equal the edge weight of the corresponding edge in G. 

We can think of this framework as bar and joint framework, where bar corresponds to edges and 

joint corresponds to vertices. The bar-and-joint framework is generically rigid if it has only 

trivial deformations, as shown in Figure 1,  e.g., translations and rotations. Laman characterized 
rigidity combinatorially [10]. 

 

 
 

Figure 1. Generically Rigid Graph 

 

Laman’s theorem can be intuitively explained as follows. For a two dimensional graph with n 
vertices, the positions of its vertices have 2n degrees of freedom, of which three are the rigid 

body motions. Therefore graph is rigid if there are 2n − 3 constraints. If each edge adds an 

independent constraint, then 2n − 3 edges should be required to eliminate all nonrigid motions 
of the graph. Clearly, if any induced subgraph with n vertices has more than 2n − 3 edges then 

these edges cannot be independent which leads the following version of Laman’s theorem [10]. 

Theorem 1. The edges of a graph G = (V, E) are independent in two dimensions if and only if no 

subgraph G′ = (V′, E′) has more than 2n′ − 3 edges, where n′ is the number of nodes in G′. 
 

Corollary 1. A graph with 2n−3 edges is generically rigid in two dimensions if and only if no 

subgraph G′ of G has more than 2n′ − 3 edges, where n′ is the number of nodes in G′. 
 

A framework ( G , p ) is globally rigid if, the distance between every pair of nodes is preserved 

for different framework realizations, and not just those defined by the edge set. If a graph G = 
(V, E) is generically rigid but contains more than 2n-3 edges, then G is called a redundantly 

rigid graph. For such a graph, G −e is rigid for all e ∈ E . An edge is called a redundant edge if 

graph remains rigid after its removal. It is known that G has a unique generic realization, i.e 

globally rigid in 2-space if and only if G is 3-connected and redundantly rigid [22] . Therefore, 
in order to find unique locations of nodes in a network, we need the underlying graph to be 

globally rigid and vice-versa.  

 
The problem determining localizability thus reduces to the problem of finding global rigidity. 

The globally rigid subregions of a graph become localizable and vice versa. 

 

3. ALGORITHM FOR FINDING RIGID CLUSTERS  
 
In this paper, we set out to find maximal localizable subregion within a network by finding the 

maximal subregions that are globally rigid. This is done by  first finding small globally rigid 

regions within a network and annexing nearby globally rigid regions.  
 

The algorithm we use for checking redundant rigidity is the polynomial time pebble game 

algorithm proposed by Jacobs[5]. The graph’s 3-connectivity property is easily checked in 

polynomial time.  
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Given a graph G = (V,E), we define a Ri as subregion of G if R = (VR, ER)is globally rigid. In 

the theorems below, we provide techniques that merge two or three globally regid regions into 
larger globally rigd regions. The following theorem [8] provides a technique called 2-merge, for 

merging two globally rigid regions.  

 

Theorem 2: Given globally rigid graphs R1 = (V1, E1) and R2 = (V2, E2), the graph formed by  

merging the two regions, R2-merge = (V1 ∪ V2  , E1 ∪ E2 ∪ E’)  consisting of additional edges E’ 

described in one  conditions (a) to (d ) is a globally rigid graph.  

 
a. There are three or more vertices in common between V1 and V2 . The additional edges 

consist of edges with one end point in V1 and other in V2, and E’ could be empty.  

b. There are two vertices in common between V1 and V2, and there is at least one additional 

vertex in V1 that has at least one edge connecting to a vertex V2 
c. There is one vertex in common between V1 and V2, and there are at least two other 

vertices that each have at least one edge connecting to a different vertex in V2 

d. There are no vertices in common between V1 and V2, and there are at least 3 vertices in 
Vi  (i=1,2) each have an edge connecting to a  different vertex in Vj (j ≠i)  and there are at 

least 4 edges between vertices of V1 and vertices of V2.  

 
The proof can be found in [8]. 

 

In this paper, we provide a technique, 3-merge, for merging three globally rigid regions into a 

single globally rigid region. 
 

Theorem 3: Given globally rigid graphs R1 = (V1, E1), R2 = (V2, E2) and  R3 = (V3, E3) the graph 

formed by merging the three regions, R3-merge = (V1 ∪ V2∪ V3, E1 ∪ E2 ∪ E3∪ E’)  is globally 
rigid if there are 7 edges connecting the three graphs in such a way that no two regions have 

more than 4 edges between them and there are at least 3 vertices in each region that have an 

edge connecting to another region.  

 

Proof: We will prove that the graph Rmerge = R1 ∪ R2 ∪ R3∪ {ei, i = 1, 7} is a globally rigid 

graph.  Note that each Ri i =1,3 are 3-connected and redundantly rigid by Corollary 1. We will 

prove that the graph  R3-merge is also 3-connected and redundantly rigid.  
 

Since each Ri is 3-connected, there are three vertex disjoint paths between any two vertices with 

the same Ri, i =1,3. Therefore, WLOG, it is sufficient to prove that there are three vertex 

disjoint paths from one vertex vi of R1 to vj of R2. Since there are 7 edges between the three 
regions, if there are no edges between R1 and R2, there must be at least 4 edges between R1 to R3 

or R2 to R3 and this is not the case. Therefore, there is at one edge between R1 and R2. 

 
Also, note that there are three vertices in R1 which have edges with the other endpoint in R2 or 

R3. If three of these edges are between R1 and R2, then we have three vertex disjoint paths 

between any vertex of R1 and any vertex of R2. If there are two vertex disjoint paths using direct 
edges, then there must be a thrid vertex in R1, connects to R3. Since there are three edges from 

R3 to R2, (since otherwise the total number of edges between three regions will be less than 7) 

,we can use one of the paths from R2 to R3, to find the third path from a vertex in R1 and a 

vertex in R2. Thus proving 3-connectivity of R3-merge 

 

To prove redundant rigidity, we will show that removal of any edge leaves the graph generically 

rigid. Clearly, each graph R1, R2, and R3 is redundantly rigid, which means that removing any 
edge from any of the graphs, the remaining graph contains 2n1-3, 2n2-3 and 2n3-3 edges 

spanning the n1, n2 and n3 vertices such that each of these are independent edges in R1, R2 and 

R3 respectively. We will prove that removing an edge from R3-merge, still leaves an independent 
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set edges of size 2(n1+n2+n3) -3 edges. Removing any one of the 7  cross edges, the remaining 

graph contains 2(n1+n2+n3) -9 + 6 = 2(n1+n2+n3)-3 edges. We will prove that the graph 
containing the independant edges from each region and the six cross edges, forms an 

independant set of edges for the merged region.  

 

Note that by Theorem 2, a graph G with n vertices and 2n-3 edges is an independent graph (i.e 
all of its edges are independent) if there is no subgraph of G, of k vertices with more than 2k-3 

edges. Let us consider subgraph S of R3-merge-{e} where e is any cross edge. If the S contains no 

cross edges, then S is independent due Corollary 1. Consider a subgraph that contains all of the 
six cross edges. Any subgraph that includes all of these 6 edges, there no more than 2k1

-3, 2k2
-3 

and 2k3
-3 in each of the subraphs. Therefore, there are no more than 2(k1+k2+k3)-9+6 = 2k-3 

edges in the subgraph that includes all of the cross edges, proving redundant rigidity. For a 

subgraph that includes less than the maximum number of cross edges, the same argument holds 
 

 
 

Figure 2. A Smaple Wheel Graph 

 

4. LOCALIZATION ALGORITHM USING RIGID CLUSTERS  
 
Given a WSN graph we perform a centralized algorithm as follows: 

1. Find the one-hop globally rigid regions by considering the one-hop neigbors of each 

vertex. These have wheel structures and they might have vertices in common. See 

Figure 2.  
Repeat steps i) to iii) until no additional merges are possible.  

i) To merge two one-hop rigid regions, we use 2-merge of Theorem 2 with three common 

vertices we find one the conditions of (a). This step is repeated until no additional 2-

merges are possible, 
ii)  The resulting rigid regions from Step i) are merged using 2-merge with edges in 

common by looking to see if conditions (b), (c) and (d) of Theorem 2 hold. Again this 

step is repeated until no additonal merges are possible.  
iii)  The resulting rigid regions from Step ii) are merged using 3-merge algorithm of 

Theorem 3, looking for three regions for which conditions of 3-merge hold. This step 

is repeated until no additional merges are possible. 
2. Once the large rigid regions are thus formed, we use 3 anchors in each rigid region to 

localize the rigid regions.  

 

5. SIMULATION RESULTS  
 

Simulation was performed on Matlab, using 100 nodes on a 100 by 100 square foot area with 

various radii from 12 to 22. The nodes were uniformly distributed over the area. The results in 
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Figure 3, show that even for really sparse networks with radius as low as 17, significant number 

of nodes belong to rigid regions and can be localized using three anchors per region.   
 

Figure 3 shows that using 3-merge the number of anchors needed for localizing all localizable 

nodes dramatically decreases when the radius goes from 12 to 22 and 3 anchors suffice for 

localizing more than 98% of the nodes when the radius is 22, as indicated in Figure 4. Figure 5 
demonstrates that this technique finds really large rigid subgraph and largest rigid subgraph size 

constains most of the nodes for networks of radious 22. Figures 6 and 7 demonstrate that even 

for a sparse graph, the number of rigid regions that the algorithm finds are numerous as outlined 
by the cyan edges. Figures  8 and 9 demonstrate that for dense graph with a radius of 22, all 

rigid regions are merged into single rigid region making the entire network localizable with just 

3 anchors. 

  

 
Figure 3: Number of nodes in rigid regions with 3-merge  

 

 
Figure 4: Number of anchors needed to localize the nodes in rigid regions 
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Figure 5: Size of largest rigid region when network regions merged using 3-merge 

 

 
Figure 6: A sparse network graph with radius of 10 

 

 
 

Figure 7: Rigid regions found in the graph in Figure 4 using 3-merge algorithm  
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Figure 8: Network with 100 nodes and radius of 22 

 

 
Figure 9: Rigid regions found in the graph in Figure 6 using 3-merge algorithm 

 

6. CONCLUSION 
 

The paper presents a new theorem for merging two rigid regions into a single rigid region for a 

graph. This theorem is used to find  large rigid regions in a network graph, starting with wheel 
graphs and merging them using 2 merge algorithm first and then merging three regions at a time 

that obey the conditions of the theorem. The simulation results show that when the radius of the 

network graph is 19 feet or above in a 100 by 100 feet2 network the number of nodes localized 

is over 80%. When the network is sparse, it is important to note that the property is less likely to 
be found between three regions due the 7 edge requirement between regions. It would be 

interesting to find out what is the number of rigid clusters that can be merged in a sparse 
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network graph using merging algorithms, after which no significant increase can be found in 

size of the largest rigid region. 
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